14 research outputs found

    Tunable microstructured membranes in organ‐on‐chip to monitor trans‐endothelial hydraulic resistance

    Get PDF
    Tissue engineering is an interdisciplinary field, wherein scientists from different backgrounds collaborate to address the challenge of replacing damaged tissues and organs through the in vitro fabrication of functional and transplantable biological structures. Because the development and optimization of tissue engineering strategies rely on the complex interaction of cells, materials, and the physical–chemical tissue microenvironment, there is a need for experimental models that allow controlled studies of these aspects. Organs-on-chips (OOCs) have recently emerged as in vitro models that capture the complexity of human tissues in a controlled manner, while including functional readouts related to human organ physiology. OOCs consist of multiple microfluidic cell culture compartments, which are interfaced by porous membranes or hydrogels in which human cells can be cultured, thereby providing a controlled culture environment that resembles the microenvironment of a certain organ, including mechanical, biochemical, and geometrical aspects. Because OOCs provide both a well-controlled microenvironment and functional readouts, they provide a unique opportunity to incorporate, evaluate, and optimize materials for tissue engineering. In this study, we introduce a polymeric blend membrane with a three-dimensional double-porous morphology prepared from a poly(ɛ-caprolactone)–chitosan blends (PCL–CHT) by a modified liquid-induced phase inversion technique. The membranes have different physicochemical, microstructural, and morphological properties depending on different PCL–CHT ratios. Big surface pores (macrovoids) provide a suitable microenvironment for the incorporation of cells or growth factors, whereas an interconnected small porous (macroporous) network allows transfer of essential nutrients, diffusion of oxygen, and removal of waste. Human umbilical vein endothelial cells were seeded on the blend membranes embedded inside an OOC device. The cellular hydraulic resistance was evaluated by perfusing culture medium at a realistic transendothelial pressure of 20 cmH2O or 2 kPa at 37°C after 1 and 3 days postseeding. By introducing and increasing CHT weight percentage, the resistance of the cellular barrier after 3 days was significantly improved. The high tuneability over the membrane physicochemical and architectural characteristics might potentially allow studies of cell–matrix interaction, cell transportation, and barrier function for optimization of vascular scaffolds using OOCs

    Fluidic circuit board with modular sensor and valves enables stand-alone, tubeless microfluidic flow control in organs-on-chips

    Get PDF
    Organs-on-chips are a unique class of microfluidic in vitro cell culture models, in which the in vivo tissue microenvironment is mimicked. Unfortunately, their widespread use is hampered by their operation complexity and incompatibility with end-user research settings. To address these issues, many commercial and non-commercial platforms have been developed for semi-automated culture of organs-on-chips. However, these organ-on-chip culture platforms each represent a closed ecosystem, with very little opportunity to interchange and integrate components from different platforms or to develop new ones. The translational organ-on-chip platform (TOP) is a multi-institutional effort to develop an open platform for automated organ-on-chip culture and integration of components from various developers. Central to TOP is the fluidic circuit board (FCB), a microfluidic plate with the form factor of a typical well plate. The FCB enables microfluidic control of multiple components like sensors or organ-on-chip devices through an interface based on openly available standards. Here, we report an FCB to integrate commercial and in-house developed components forming a stand-alone flow control system for organs-on-chips. The control system is able to achieve constant and pulsatile flow recirculation through a connected organ-on-chip device. We demonstrate that this system is able to automatically perfuse a heart-on-chip device containing co-cultures of cardiac tissues derived from human pluripotent stem cell-derived cardiomyocytes and monolayers of endothelial cells for five days. Altogether, we conclude that open technology platforms allow the integration of components from different sources to form functional and fit-for-purpose organ-on-chip systems. We anticipate that open platforms will play a central role in catalyzing and maturing further technological development of organ-on-chip culture systems

    Pressure-Driven Perfusion System to Control, Multiplex and Recirculate Cell Culture Medium for Organs-on-Chips

    Get PDF
    Organ-on-chip (OoC) devices are increasingly used to mimic the tissue microenvironment of cells in intact organs. This includes microchannels to mimic, for example, fluidic flow through blood vessels. Present methods for controlling microfluidic flow in these systems rely on gravity, rocker systems or external pressure pumps. For many purposes, pressure pumps give the most consistent flow profiles, but they are not well-suited for high throughput as might be required for testing drug responses. Here, we describe a method which allows for multiplexing of microfluidic channels in OoC devices plus the accompanying custom software necessary to run the system. Moreover, we show the approach is also suitable for recirculation of culture medium, an essential cost consideration when expensive culture reagents are used and are not “spent” through uptake by the cells during transient unidirectional flow

    Organ-on-a-chip technology : a novel approach to investigate cardiovascular diseases

    Get PDF
    The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based structures and the inclusion of physiological and pathological shear stress conditions. The opportunities to discover novel targets and to perform drug testing with chip-based platforms have substantially enhanced, thanks to the utilization of patient-derived cells and precise control of their microenvironment. These organ models will provide an important asset for future approaches to personalized cardiovascular medicine and improved patient care. However, certain technical and biological challenges remain, making the global utilization of OoCs to tackle unanswered questions in cardiovascular science still rather challenging. This review article aims to introduce and summarize published work on hearts- and vessels-on chips but also to provide an outlook and perspective on how these advanced in vitro systems can be used to tailor disease models with patient-specific characteristics.De tre sista författarna delar sistaförfattarskapet</p

    Facilitating implementation of organs-on-chips by open platform technology

    Get PDF
    Organ-on-chip (OoC) and multi-organs-on-chip (MOoC) systems have the potential to play an important role in drug discovery, disease modeling, and personalized medicine. However, most devices developed in academic labs remain at a proof-of-concept level and do not yet offer the ease-of-use, manufacturability, and throughput that are needed for widespread application. Commercially available OoC are easier to use but often lack the level of complexity of the latest devices in academia. Furthermore, researchers who want to combine different chips into MOoC systems are limited to one supplier, since commercial systems are not compatible with each other. Given these limitations, the implementation of standards in the design and operation of OoCs would strongly facilitate their acceptance by users. Importantly, the implementation of such standards must be carried out by many participants from both industry and academia to ensure a widespread acceptance and adoption. This means that standards must also leave room for proprietary technology development next to promoting interchangeability. An open platform with standardized interfacing and user-friendly operation can fulfill these requirements. In this Perspective article, the concept of an open platform for OoCs is defined from a technical perspective. Moreover, we discuss the importance of involving different stakeholders in the development, manufacturing, and application of such an open platform

    Organ-on-a-chip technology : A novel approach to investigate cardiovascular diseases

    Get PDF
    The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based structures and the inclusion of physiological and pathological shear stress conditions. The opportunities to discover novel targets and to perform drug testing with chip-based platforms have substantially enhanced, thanks to the utilization of patient-derived cells and precise control of their microenvironment. These organ models will provide an important asset for future approaches to personalized cardiovascular medicine and improved patient care. However, certain technical and biological challenges remain, making the global utilization of OoCs to tackle unanswered questions in cardiovascular science still rather challenging. This review article aims to introduce and summarize published work on hearts- and vessels-on chips but also to provide an outlook and perspective on how these advanced in vitro systems can be used to tailor disease models with patient-specific characteristics

    Aneurysm-on-a-Chip: Setting Flow Parameters for Microfluidic Endothelial Cultures Based on Computational Fluid Dynamics Modeling of Intracranial Aneurysms

    Get PDF
    Intracranial aneurysms are pouch-like extrusions from the vessels at the base of the brain which can rupture and cause a subarachnoid hemorrhage. The pathophysiological mechanism of aneurysm formation is thought to be a consequence of blood flow (hemodynamic) induced changes on the endothelium. In this study, the results of a personalized aneurysm-on-a-chip model using patient-specific flow parameters and patient-specific cells are presented. CT imaging was used to calculate CFD parameters using an immersed boundary method. A microfluidic device either cultured with human umbilical vein endothelial cells (HUVECs) or human induced pluripotent stem cell-derived endothelial cells (hiPSC-EC) was used. Both types of endothelial cells were exposed for 24 h to either 0.03 Pa or 1.5 Pa shear stress, corresponding to regions of low shear and high shear in the computational aneurysm model, respectively. As a control, both cell types were also cultured under static conditions for 24 h as a control. Both HUVEC and hiPSC-EC cultures presented as confluent monolayers with no particular cell alignment in static or low shear conditions. Under high shear conditions HUVEC elongated and aligned in the direction of the flow. HiPSC-EC exhibited reduced cell numbers, monolayer gap formation and cells with aberrant, spread-out morphology. Future research should focus on hiPSC-EC stabilization to allow personalized intracranial aneurysm models

    Generation and Culture of Cardiac Microtissues in a Microfluidic Chip with a Reversible Open Top Enables Electrical Pacing, Dynamic Drug Dosing and Endothelial Cell Co-Culture

    No full text
    Cardiovascular disease morbidity has increased worldwide. Organs-on-chips and human pluripotent stem cell (hPSC) technologies aid to overcome some of the limitations in cardiac in vitro models. Here, a bi-compartmental, monolithic heart-on-chip device that facilitates porous membrane integration in a single fabrication step is presented. Moreover, the device includes open-top compartments that allow facile co-culture of hPSC-derived cardiomyocytes and human adult cardiac fibroblast into geometrically defined cardiac microtissues. The device can be reversibly closed with a glass seal or a lid with fully customized 3D-printed pyrolytic carbon electrodes allowing electrical stimulation of cardiac microtissues. A subjacent microfluidic channel allowed localized and dynamic drug administration to the cardiac microtissues, as demonstrated by a chronotropic response to isoprenaline. Moreover, the microfluidic channel can also be populated with human induced pluripotent stem-derived endothelial cells allowing co-culture of heterotypic cardiac cells in one device. Overall, this study demonstrates a novel heart-on-chip model that systematically integrates an open-top device with a 3D printed carbon electrode for electrical pacing and culture of cardiac tissues while enabling active perfusion and dynamic drug dosing. Advances in the engineering of human heart-on-chip models represent an important step towards making organ-on-a-chip technology a routine aspect of preclinical cardiac drug development

    Collagen I based enzymatically degradable membranes for organ-on-a-chip barrier models

    Get PDF
    Organs-on-chips are microphysiological in vitro models of human organs and tissues that rely on culturing cells in a well-controlled microenvironment that has been engineered to include key physical and biochemical parameters. Some systems contain a single perfused microfluidic channel or a patterned hydrogel, whereas more complex devices typically employ two or more microchannels that are separated by a porous membrane, simulating the tissue interface found in many organ subunits. The membranes are typically made of synthetic and biologically inert materials that are then coated with extracellular matrix (ECM) molecules to enhance cell attachment. However, the majority of the material remains foreign and fails to recapitulate the native microenvironment of the barrier tissue. Here, we study microfluidic devices that integrate a vitrified membrane made of collagen-I hydrogel (VC). The biocompatibility of this membrane was confirmed by growing a healthy population of stem cell derived endothelial cells (iPSC-EC) and immortalized retinal pigment epithelium (ARPE-19) on it and assessing morphology by fluorescence microscopy. Moreover, VC membranes were subjected to biochemical degradation using collagenase II. The effects of this biochemical degradation were characterized by the permeability changes to fluorescein. Topographical changes on the VC membrane after enzymatic degradation were also analyzed using scanning electron microscopy. Altogether, we present a dynamically bioresponsive membrane integrated in an organ-on-chip device with which disease-related ECM remodeling can be studied
    corecore